CdSe Quantum Dot (QD)-Induced Morphological and Functional Impairments to Liver in Mice

نویسندگان

  • Wei Liu
  • Shuping Zhang
  • Lixin Wang
  • Chen Qu
  • Changwen Zhang
  • Lei Hong
  • Lin Yuan
  • Zehao Huang
  • Zhe Wang
  • Sijin Liu
  • Guibin Jiang
چکیده

Quantum dots (QDs), as unique nanoparticle probes, have been used in in vivo fluorescence imaging such as cancers. Due to the novel characteristics in fluorescence, QDs represent a family of promising substances to be used in experimental and clinical imaging. Thus far, the toxicity and harmful health effects from exposure (including environmental exposure) to QDs are not recognized, but are largely concerned by the public. To assess the biological effects of QDs, we established a mouse model of acute and chronic exposure to QDs. Results from the present study suggested that QD particles could readily spread into various organs, and liver was the major organ for QD accumulation in mice from both the acute and chronic exposure. QDs caused significant impairments to livers from mice with both acute and chronic QD exposure as reflected by morphological alternation to the hepatic lobules and increased oxidative stress. Moreover, QDs remarkably induced the production of intracellular reactive oxygen species (ROS) along with cytotoxicity, as characterized by a significant increase of the malondialdehyde (MDA) level within hepatocytes. However, the increase of the MDA level in response to QD treatment could be partially blunted by the pre-treatment of cells with beta-mercaptoethanol (β-ME). These data suggested ROS played a crucial role in causing oxidative stress-associated cellular damage from QD exposure; nevertheless other unidentified mediators might also be involved in QD-mediated cellular impairments. Importantly, we demonstrated that the hepatoxicity caused by QDs in vivo and in vitro was much greater than that induced by cadmium ions at a similar or even a higher dose. Taken together, the mechanism underlying QD-mediated biological influences might derive from the toxicity of QD particles themselves, and from free cadmium ions liberated from QDs as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity

The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxic...

متن کامل

Changes in Reproductive Hormones Secretion Involved in Quantum Dots-induced Reproductive Toxicity in Adult Male Mice

Background and Aims: Quantum dots (QDs), as colloidal nanocrystalline semiconductors, present QD wavelengths in terms of biomedical assays and imaging, though the high toxicity of their core demands to be taken into consideration. Investigating this subject is taken into account as an important concept   concerning use of these nanoparticles in the medical applications. Materials a...

متن کامل

Bias-Induced Optical Absorption of Current Carrying Two-Orbital Quantum Dot with Strong Electron-Phonon Interaction (Polaron Regime)

The one photon absorption (OPA) cross section of a current carrying two-orbital quantum dot (QD) with strong electron-phonon interaction (polaron regime) is considered. Using the self-consistent non-equilibrium Hartree-Fock (HF) approximation, we determine the dependence of OPA cross section on the applied bias voltage, the strength of effective electron-electron interaction, and level spacing ...

متن کامل

P-156: A Study about Toxicity of CdSe Quantum Dots on Male Sexual System of Mice and Controlling This Toxicity by ZnS Coverage in Immature Mice

Background: Quantum dots are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous but toxicity of such quantum dots is not yet systematically investigated. On the other hand, in vitro studies have shown almost complete control of CdSe induced cytotoxicity by ZnS coverage. Toxicity of CdSe quantum dots and controlling this toxicity by ZnS coverage in immature m...

متن کامل

In vivo effects of quantum dot on organs development before maturity

Objective(s):  The field of nanotechnology is rapidly expanding .The development quantum dots quantum dot (QDs), show great promise for treatment and diagnosis of cancer and targeted drug delivery little data on the toxicity of QDs, especially for in vivo applications, are available. As a result, concerns exist over their toxicity for in vivo applications. Then, cytotoxic effects of cadmium sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011